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Preface

This volume is a showcase for the continuing vitality of Russian math-
ematics in fields related to algebraic geometry. The Eastern European
scientific diaspora may have weakened the magnificent edifice of Russian
mathematics, but the Russian school had both strength and depth, and
there remains a great deal of important scientific activity in the coun-
try. Universities continue to attract some of the most able students into
mathematics, and their graduates have the knowledge and enthusiasm
to be effective participants in the global mathematical endeavour.

There are great difficulties facing new Russian ‘Candidates of Science’
in mathematics. It is rare for a young person to gain a living wage as
a lecturer and researcher alone. It requires dedication, self-sacrifice and
a willingness to look for other sources of income for a mathematician
to become established while remaining in Russia. It is not surprising
that many talented mathematicians seek and find employment abroad.
Despite these handicaps there are strong research groups that continue
to foster new talents.

In the fields of algebraic geometry and algebraic number theory there
are healthy groups, particularly those centred around the Steklov In-
stitute in Moscow. To give some examples, in the birational geometry
of 3-folds there is a group of four well-established experts who support
about 10 research students and postdoctoral fellows. Another group of
specialists pioneered the idea of the derived category of coherent sheaves
on a variety (up to equivalence) as a geometric invariant of the variety,
analogous to K-theory or cohomology theories, and continues to work in
this fruitful area. Another strong strand of research is in algebraic and
complex versions of quantisation relating to special geometries such as
special Lagrangian fibrations in mirror symmetry.

The London Mathematical Society set up the ‘Young Russian Mathe-
maticians’ scheme to help these mathematicians to visit the UK and to
provide them with some financial support. Visitors give lectures in this
country and write a survey article on the work of their research groups,
for which they receive payment. This is the first volume of such survey
articles to be published by the Society.

Nicholas Young
Department of Pure Mathematics

Leeds University.
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Affine embeddings of homogeneous spaces

Ivan V. Arzhantsev

Introduction

Throughout the paper G denotes a connected reductive algebraic group,
unless otherwise specified, and H an algebraic subgroup of G. All groups
and algebraic varieties considered are over an algebraically closed field
K of characteristic zero, unless otherwise specified. Let K[X] be the
algebra of regular functions on an algebraic variety X and K(X) the
field of rational functions on X provided X is irreducible. Our general
references are [30] for algebraic groups and [56, 37, 29] for algebraic
transformation groups and invariant theory.

Affine embeddings: definitions. Let us recall that an irreducible
algebraic G-variety X is said to be an embedding of the homogeneous
space G/H if X contains an open G-orbit isomorphic to G/H. We shall
denote this relationship by G/H — X. Let us say that an embedding
G/H — X is affine if the variety X is affine. In many problems of
invariant theory, representation theory and other branches of mathe-
matics, only affine embeddings of homogeneous spaces arise. This is
why it is reasonable to study specific properties of affine embeddings in
the framework of a well-developed general embedding theory.

Which homogeneous spaces admit an affine embedding? It is
easy to show that a homogeneous space G/H admits an affine embed-
ding if and only if G/H is quasi-affine (as an algebraic variety). In
this situation, the subgroup H is said to be observable in G. A closed
subgroup H of G is observable if and only if there exist a rational finite-
dimensional G-module V" and a vector v € V such that the stabilizer G,
coincides with H. (This follows from the fact that any affine G-variety
may be realized as a closed invariant subvariety in a finite-dimensional
G-module [56, Th.1.5].) There is a nice group-theoretic description of

1



2 1. V. Arzhantsev

observable subgroups due to A. Sukhanov: a subgroup H is observable
in G if and only if there exists a quasi-parabolic subgroup ) C G such
that H C @ and the unipotent radical H" is contained in the unipotent
radical Q", see [63], [29, Th.7.3]. (Let us recall that a subgroup @ is
said to be quasi-parabolic if @ is the stabilizer of a highest weight vector
in some G-module V.)

It follows from Chevalley’s theorem that any subgroup H without non-
trivial characters (in particular, any unipotent subgroup) is observable.
By Matsushima’s criterion, a homogeneous space G/H is affine if and
only if H is reductive. (For a simple proof, see [42] or [4]; a characteristic-
free proof can be found in [57].) In particular, any reductive subgroup
is observable. A description of affine homogeneous spaces G/H for non-
reductive G is still an open problem.

Complexity of reductive group actions. Now we define the notion
of complexity, which we shall encounter many times in the text. Let
us fix the notation. By B = TU denote a Borel subgroup of G with
a maximal torus 7" and the unipotent radical U. By definition, the
complexity ¢(X) of a G-variety X is the codimension of a B-orbit of
general position in X for the restricted action B : X. This notion firstly
appeared in [45] and [70]. Now it plays a central role in embedding
theory. By Rosenlicht’s theorem, ¢(X) is equal to the transcendence
degree of the field K(X)? of rational B-invariant functions on X. A
normal G-variety X is called spherical if ¢(X) = 0 or, equivalently,
K(X)? = K. A homogeneous space G/H and a subgroup H C G are
said to be spherical if G/H is a spherical G-variety.

Rational representations, the isotypic decomposition and G-
algebras. A linear action of G in vector space W is said to be rational
if for any vector w € W the linear span (Gw) is finite-dimensional and
the action G : (Gw) defines a representation of an algebraic group. Since
any finite-dimensional representation of G is completely reducible, it is
easy to prove that W is a direct sum of finite-dimensional simple G-
modules.

Let Z4(G) be the semigroup of dominant weights of G. For any
A € E4(G), denote by W) the sum of all simple submodules in W of
highest weight A. The subspace W), is called an isotypic component of
W of weight A, and the decomposition

W =&xez, (¢)Wi

is called the isotypic decomposition of W.
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If G acts on an affine variety X, the linear action G : K[X], (¢f)(x) :=
f(g~'z), is rational [56, Lemma 1.4]. (Note that for irreducible X the
action on rational functions G : K(X) defined by the same formula is
not rational.) The isotypic decomposition

K[X] = @xrez, (o) K[X]a

and its interaction with the multiplicative structure on K[X] give im-
portant technical tools for the study of affine embeddings.

An affine G-variety X is spherical if and only if K[X], is either zero
or a simple G-module for any A € 24 (G) [32].

Suppose that 2 is a commutative associative algebra with unit over
K. If G acts on 2 by automorphisms and the action G : 2 is rational,
we say that 2 is a G-algebra. The algebra K[X] is a G-algebra for any
affine G-variety X. Moreover, any finitely generated G-algebra without
nilpotents arises in this way.

We conclude the introduction with a review of the contents of this
survey.

One of the pioneering works in embedding theory was a classification of
normal affine SL(2)-embeddings due to V. L. Popov, see [52, 37]. In the
same period (early seventies) the theory of toric varieties was developed.
A toric variety may be considered as an equivariant embedding of an
algebraic torus 7. Such embeddings are described in terms of convex
fans. Any cone in the fan of a toric variety X represents an affine toric
variety. This reflects the fact that X has a covering by T-invariant affine
charts. In 1972, V. L. Popov and E. B. Vinberg [55] described affine
embeddings of quasi-affine homogeneous spaces G/H, where H contains
a maximal unipotent subgroup of G. In Section 1 we discuss briefly these
results together with a more recent one: a remarkable classification of
algebraic monoids with a reductive group G as the group of invertible
elements (E. B. Vinberg [71]). This is precisely the classification of affine
embeddings of the space (G x G)/A(G), where A(G) is the diagonal
subgroup.

In Section 2 we consider connections of the theory of affine embeddings
with Hilbert’s 14th problem. Let H be an observable subgroup of G.
By the Grosshans theorem, the following conditions are equivalent:

1) the algebra of invariants K[V]# is finitely generated for any G-module
Vi
2) the algebra of regular functions K[G/H] is finitely generated;
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3) there exists a (normal) affine embedding G/H — X such that
codimy (X \ (G/H)) > 2
(such an embedding is called the canonical embedding of G/H).

It was proved by F. Knop that if ¢(G/H) < 1 then the algebra K|G/H]|
is finitely generated. This result provides a large class of subgroups with
a positive solution of Hilbert’s 14th problem. In particular, Knop’s the-
orem together with Grosshans’ theorem on the unipotent radical P* of a
parabolic subgroup P C G includes almost all known results on Popov-
Pommerening’s conjecture (see 2.2). We study the canonical embedding
of G/P* from a geometric view-point. Finally, we mention counterex-
amples to Hilbert’s 14th problem due to M. Nagata, P. Roberts, and
R. Steinberg.

In Section 3 we introduce the notion of an affinely closed space, i.e.
an affine homogeneous space admitting no non-trivial affine embeddings,
and discuss the result of D. Luna related to this notion. (We say that
an affine embedding G/H — X is trivial if X = G/H.) Affinely closed
spaces of an arbitrary affine algebraic group are characterized and some
elementary properties of affine embeddings are formulated.

Section 4 is devoted to affine embeddings with a finite number of or-
bits. We give a characterization of affine homogeneous spaces G/H such
that any affine embedding of G/H contains a finite number of orbits.
More generally, we compute the maximal number of parameters in a
continuous family of G-orbits over all affine embeddings of a given affine
homogeneous space G/H. The group of equivariant automorphisms of
an affine embedding is also studied here.

Some applications of the theory of affine embeddings to functional
analysis are given in Section 5. Let M = K/L be a homogeneous space of
a connected compact Lie group K, and C(M) the commutative Banach
algebra of all complex-valued continuous functions on M. The K-action
on C(M) is defined by the formula (kf)(z) = f(k~'z), k€ K, z € M.
We shall say that A is an invariant algebra on M if A is a K-invariant
uniformly closed subalgebra with unit in C'(M). Denote by G and H the
complexifications of K and L respectively. Then G is a reductive alge-
braic group with reductive subgroup H. There exists a correspondence
between finitely generated invariant algebras on M and affine embed-
dings of G/F with some additional data, where F is an observable sub-
group of G containing H. This correspondence was introduced by V. M.
Gichev [25], I. A. Latypov [38, 39] and, in a more algebraic way, by E. B.
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Vinberg. We give a precise formulation of this correspondence and refor-
mulate some facts on affine embeddings in terms of invariant algebras.
Some results of this section are new and not published elsewhere.

The last section is devoted to G-algebras. It is easy to prove that any
subalgebra in the polynomial algebra K]z] is finitely generated. On the
other hand, one can construct many non-finitely generated subalgebras
in K[z1,...,2,] for n > 2. More generally, every subalgebra in an as-
sociative commutative finitely generated integral domain 2l with unit is
finitely generated if and only if Kdim2( < 1, where Kdim %2 is the Krull
dimension of 2 (Proposition 6.5). In Section 6 we obtain an equivari-
ant version of this result. The problem was motivated by the study of
invariant algebras in the previous section. The proof of the main re-
sult (Theorem 6.3) is based on a geometric method for constructing a
non-finitely generated subalgebra in a finitely generated G-algebra and
on properties of affine embeddings obtained above. In particular, the
notion of an affinely closed space is crucial for the classification of G-
algebras with finitely generated invariant subalgebras. The arguments
used in this text are slightly different from the original ones [9]. A char-
acterization of G-algebras with finitely generated invariant subalgebras
for non-reductive G is also given in this section.

Acknowledgements. These notes were initiated by my visit to Manch-
ester University in March, 2003. I am grateful to this institution for
hospitality, to Alexander Premet for invitation and organization of this
visit, and to the London Mathematical Society for financial support.
The work was continued during my stay at Institut Fourier (Grenoble)
in April-July, 2003. I would like to express my gratitude to this institu-
tion and especially to Michel Brion for the invitation, and for numerous
remarks and suggestions. Special thanks are due to F. D. Grosshans and
D. A. Timashev for useful comments.

1 Remarkable classes of affine embeddings
1.1 Affine toric varieties

We begin with some notation. Let T be an algebraic torus and Z(7T)
the lattice of its characters. A T-action on an affine variety X defines
a Z(T)-grading on the algebra K[X] = @, c=(1)K[X],, where K[X], =
{f | tf = x(t)f forany ¢t € T}. (This grading is just the isotypic
decomposition, see the introduction.) If X is irreducible, then the set
L(X) = {x | K[X]y # 0} is a submonoid in =(T").
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Definition 1.1. An affine toric variety X is a normal affine T-variety
with an open T-orbit isomorphic to 7.

Below we list some basic properties of T-actions:

e Anaction T : X has an open orbit if and only if dim K[X], = 1 for any
X € L(X). In this situation K[X] is T-isomorphic to the semigroup
algebra KL(X).

e An action T : X is effective if and only if the subgroup in Z(7)
generated by L(X) coincides with Z(7T').

e Suppose that T : X is an effective action with an open orbit. Then
the following conditions are equivalent:

1) X is normal;

2) the semigroup algebra KL(X) is integrally closed;

3) if x € E(T) and there exists n € N, n > 0, such that ny € L(X),
then x € L(X) (the saturation condition);

4) there exists a solid convex polyhedral cone K in E(T") ®z Q such
that L(X) = K NE(T).

In this situation, any T-invariant radical ideal of K[X] corresponds to

the subsemigroup L(X) \ M for a fixed face M of the cone K. This

correspondence defines a bijection between T-invariant radical ideals

of K[X] and faces of K.

The proof of these properties can be found, for example, in [23]. Sum-
marizing all the results, we obtain

Theorem 1.2. Affine toric varieties are in one-to-one correspondence
with solid convex polyhedral cones in the space Z(T) @z Q; and T-orbits
on a toric variety are in one-to-one correspondence with faces of the
cone.

The classification of affine toric varieties will serve us as a sample for
studying more complicated classes of affine embeddings. Generalizations
of a combinatorial description of toric varieties were obtained for spher-
ical varieties [45, 33, 18], and for embeddings of complexity one [68].
In this more general context, the idea that normal G-varieties may be
described by some convex cones becomes rigorous through the method
of U-invariants developed by D. Luna and Th. Vust. The essence of this
method is contained in the following theorem (see [72, 37, 54, 29]).

Theorem 1.3. Let A be a G-algebra and U a maximal unipotent sub-
group of G. Consider the following properties of an algebra:
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it is finitely generated;
it has no nilpotent elements;
it has no zero divisors;

it is integrally closed.

If (P) is any of these properties, then the algebra 2 has property (P) if
and only if the algebra AV has property (P).

We try to demonstrate briefly some applications of the method of
U-invariants in the following subsections.

1.2 Normal affine SL(2)-embeddings

Suppose that the group SL(2) acts on a normal affine variety X and
there is a point z € X such that the stabilizer of x is trivial and the
orbit SL(2)x is open in X. We say in this case that X is a normal
SL(2)-embedding.

Let U, be a finite extension of the standard maximal unipotent sub-
group in SL(2):

€ a
o{(5 4 ) e aex).

Theorem 1.4 ([52]). Normal non-trivial SL(2)-embeddings are in one-
to-one correspondence with rational numbers h € (0,1]. Furthermore,

e h = 1 corresponds to a (unique) smooth SL(2)-embedding with two
orbits: X = SL(2)USL(2)/T;
e if h==2<1and (p,q) =1, then X = SL(2) U SL(2)/Up+q U {pt},

and {pt} is an isolated singular point in X.

The proof of Theorem 1.4 can be found in [52], [37, Ch. 3]. Here we
give only some examples and explain what the number A (which is called
the height of X) means in terms of the algebra K[X].

Example 1.5. 1) The group SL(2) acts tautologically on the space K2
and by conjugation on the space Mat(2 x 2). Consider the point

() ertme e

and its orbit

SL(2)x = {(A,v) |det A= —-1,tr A=0,Av =v,v # 0}.
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It is easy to see that the closure

X =SL12)x={(A,v)|det A=—1,tr A=0, Av = v}
is a smooth SL(2)-embedding with two orbits, hence X corresponds to
h=1.
2) Let Vg = (z%, 2971y, ..., y?) be the SL(2)-module of binary forms
of degree d. It is possible to check that

X =SL2)(z,z2y) CcVi®V;

is a normal SL(2)-embedding with the orbit decomposition X = SL(2)U
SL(2)/Us U {pt}, hence X corresponds to h = 1.

An embedding SL(2) — X, g — gz determines the injective homo-
morphism A = K[X] — K[SL(2)] with Q2 = QK[SL(2)], where Q2
is the quotient field of 2. Let U~ be the unipotent subgroup of SL(2)
opposite to U. Then

KISL2)Y ={f € KISL(2)] | f(ug) = f(9), g € SL(2),uec U™}

= K[A, B],
a b a b
whereA( e d ) —aandB< e d ) =b.
Below we list some facts ([37, Ch. 3]) that allow us to introduce the

height of an SL(2)-embedding X.

o If ¢ is an integral F-domain, where F' is a unipotent group, then
Qe = (QE)F. In particular, if € C 2 and Q2 = QC, then
QMY ) =Q(").

e Suppose that lim;_.q (

K(X) is regular on X.

e Let ® C K]z, y] be a homogeneous integrally closed subalgebra in the
polynomial algebra such that Q® = K(z,y) and 2 € ©. Then D is
generated by monomials.

In our situation, the algebra ® =AY C K[A, B] is homogeneous
because it is T-stable (since 7' normalizes U ™).

e There exists rational h € (0, 1] such that

0 ! )x exists. Then A € K[SL(2)] C

AVT = A(h) = (A'BT | L < ).
i
Moreover, for any rational h € (0,1] the subspace (SL(2)2(h)) C
K[SL(2)] is a subalgebra.
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Remark . While normal SL(2)-embeddings are parametrized by a dis-
crete parameter h, there are families of non-isomorphic non-normal SL(2)-
embeddings over a base of arbitrary dimension [13].

Remark . A classification of SL(2)-actions on normal three-dimensional
affine varieties without open orbit can be found in [6, 5].

1.3 HV -varieties and S-varieties

In this subsection we discuss the results of V. L. Popov and E. B. Vin-
berg [55]. Throughout G denotes a connected and simply connected
semisimple group.

Definition 1.6. An HV -variety X is the closure of the orbit of a highest
weight vector in a simple G-module.

Let V(X) be the simple G-module with highest weight A and vy a
highest weight vector in V(A). Denote by A* the highest weight of the
dual G-module V(\)*.

(A) = Gux- is a normal affine variety consisting of two orbits:
(M) = Gua- U{0}.

[X(N)] = K[Gua+] = ®m>0K[X(A)]ma, any isotypic component
[X (A)]ma 